Maximum Likelihood Deconvolution of Beamforming Images with Signal-Dependent Speckle Fluctuations

Author:

Zheng Yuchen1,Ping Xiaobin1,Li Lingxuan1,Wang Delin12

Affiliation:

1. Ocean College, Zhejiang University, Zhoushan 316021, China

2. Key Laboratory of Ocean Observation-Imaging Testbed of Zhejiang Province, Zhoushan 316000, China

Abstract

Ocean Acoustic Waveguide Remote Sensing (OAWRS) typically utilizes large-aperture linear arrays combined with coherent beamforming to estimate the spatial distribution of acoustic scattering echoes. The conventional maximum likelihood deconvolution (DCV) method uses a likelihood model that is inaccurate in the presence of multiple adjacent targets with significant intensity differences. In this study, we propose a deconvolution algorithm based on a modified likelihood model of beamformed intensities (M-DCV) for estimation of the spatial intensity distribution. The simulated annealing iterative scheme is used to obtain the maximum likelihood estimation. An approximate expression based on the generalized negative binomial (GNB) distribution is introduced to calculate the conditional probability distribution of the beamformed intensity. The deconvolution algorithm is further simplified with an approximate likelihood model (AM-DCV) that can reduce the computational complexity for each iteration. We employ a direct deconvolution method based on the Fourier transform to enhance the initial solution, thereby reducing the number of iterations required for convergence. The M-DCV and AM-DCV algorithms are validated using synthetic and experimental data, demonstrating a maximum improvement of 73% in angular resolution and a sidelobe suppression of 15 dB. Experimental examples demonstrate that the imaging performance of the deconvolution algorithm based on a linear small-aperture array consisting of 16 array elements is comparable to that obtained through conventional beamforming using a linear large-aperture array consisting of 96 array elements. The proposed algorithm is applicable for Ocean Acoustic Waveguide Remote Sensing (OAWRS) and other sensing applications using linear arrays.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3