Identification of Rare Wildlife in the Field Environment Based on the Improved YOLOv5 Model

Author:

Su Xiaohui12ORCID,Zhang Jiawei1,Ma Zhibin1,Dong Yanqi1ORCID,Zi Jiali1,Xu Nuo1,Zhang Haiyan12,Xu Fu12,Chen Feixiang12ORCID

Affiliation:

1. School of Information Science and Technology, Beijing Forestry University, Beijing 100083, China

2. Engineering Research Center for Forestry-Oriented Intelligent Information Processing, National Forestry and Grassland Administration, Beijing 100083, China

Abstract

Research on wildlife monitoring methods is a crucial tool for the conservation of rare wildlife in China. However, the fact that rare wildlife monitoring images in field scenes are easily affected by complex scene information, poorly illuminated, obscured, and blurred limits their use. This often results in unstable recognition and low accuracy levels. To address this issue, this paper proposes a novel wildlife identification model for rare animals in Giant Panda National Park (GPNP). We redesigned the C3 module of YOLOv5 using NAMAttention and the MemoryEfficientMish activation function to decrease the weight of field scene features. Additionally, we integrated the WIoU boundary loss function to mitigate the influence of low-quality images during training, resulting in the development of the NMW-YOLOv5 model. Our model achieved 97.3% for mAP50 and 83.3% for mAP50:95 in the LoTE-Animal dataset. When comparing the model with some classical YOLO models for the purpose of conducting comparison experiments, it surpasses the current best-performing model by 1.6% for mAP50:95, showcasing a high level of recognition accuracy. In the generalization ability test, the model has a low error rate for most rare wildlife species and is generally able to identify wildlife in the wild environment of the GPNP with greater accuracy. It has been demonstrated that NMW-YOLOv5 significantly enhances wildlife recognition accuracy in field environments by eliminating irrelevant features and extracting deep, effective features. Furthermore, it exhibits strong detection and recognition capabilities for rare wildlife in GPNP field environments. This could offer a new and effective tool for rare wildlife monitoring in GPNP.

Funder

Outstanding Youth Team Project of Central Universities

National Key R&D Program of China

Emergency Open Competition Project of the National Forestry and Grassland Administration

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3