Abstract
Tree morphological characteristics, particularly straightness and lean, significantly influence the value of the commercial products that can be obtained. Despite this, they are not usually evaluated in timber field inventories because traditional techniques are labor-intensive and largely subjective, hence the use of these parameters is limited to research and genetic breeding programs. Here, a non-destructive, fully automated methodology is presented that estimates the parameters for describing straightness and lean using terrestrial laser scanning (TLS) data. It is based on splitting stems into evenly spaced sections and estimating their centers, which are then used to automatically calculate the maximum sagitta, sinuosity, and lean of each tree. The methodology was applied in a breeding trial plot of Pinus pinaster, and the results obtained were compared with field measurements of straightness and lean based on visual classification. The methodology is robust to errors in the estimation of section centers, the basis for calculating shape parameters. Besides, its accuracy compares favorably with traditional field techniques, which often involve problems of misclassification. The new methodology is easy to use, less expensive, and overcomes the drawbacks of traditional field techniques for obtaining straightness and lean measurements. It can be modified to apply to any species and stand typology.
Funder
Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
UK Natural Environment Research Council
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献