An Improved Hybrid Beamforming Algorithm for Fast Target Tracking in Satellite and V2X Communication

Author:

Zorkun Aral Ertug1,Salas-Natera Miguel A.1ORCID,Rodríguez-Osorio Ramón Martínez1

Affiliation:

1. Centro de Procesamiento de Información y Telecomunicaciones, Escuela Técnica Superior de Ingenieros de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain

Abstract

Autonomous remote sensing systems establish communication links between nodes. Ensuring coverage and seamless communication in highly dense environments is not a trivial task as localization, separation, and tracking of targets, as well as interference suppression, are challenging. Therefore, smart antenna systems fulfill these requirements by employing beamforming algorithms and are considered a key technology for autonomous remote sensing applications. Among many beamforming algorithms, the recursive least square (RLS) algorithm has proven superior convergence and convergence rate performances. However, the tracking performance of RLS degrades in the case of dynamic targets. The forgetting factor in RLS needs to be updated constantly for fast target tracking. Additionally, multiple beamforming algorithms can be combined to increase tracking performance. An improved hybrid constant modulus RLS beamforming algorithm with an adaptive forgetting factor and a variable regularization factor is proposed. The forgetting factor is updated using the low-complexity yet robust adaptive moment estimation method (ADAM). The sliding-window technique is applied to the proposed algorithm to mitigate the steady-state noise. The proposed algorithm is compared with existing RLS-based algorithms in terms of convergence, convergence rate, and computational complexity. Based on the results, the proposed algorithm has at least 10 times better convergence (accuracy) and a convergence rate two times faster than the compared RLS-based algorithms.

Funder

Spanish Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3