Highly Ordered SnO2 Nanopillar Array as Binder-Free Anodes for Long-Life and High-Rate Li-Ion Batteries

Author:

Dai Liyufen,Zhong Xiangli,Zou Juan,Fu Bi,Su Yong,Ren Chuanlai,Wang Jinbin,Zhong GaokuoORCID

Abstract

SnO2, a typical transition metal oxide, is a promising conversion-type electrode material with an ultrahigh theoretical specific capacity of 1494 mAh g−1. Nevertheless, the electrochemical performance of SnO2 electrode is limited by large volumetric changes (~300%) during the charge/discharge process, leading to rapid capacity decay, poor cyclic performance, and inferior rate capability. In order to overcome these bottlenecks, we develop highly ordered SnO2 nanopillar array as binder-free anodes for LIBs, which are realized by anodic aluminum oxide-assisted pulsed laser deposition. The as-synthesized SnO2 nanopillar exhibit an ultrahigh initial specific capacity of 1082 mAh g−1 and maintain a high specific capacity of 524/313 mAh g−1 after 1100/6500 cycles, outperforming SnO2 thin film-based anodes and other reported binder-free SnO2 anodes. Moreover, SnO2 nanopillar demonstrate excellent rate performance under high current density of 64 C (1 C = 782 mA g−1), delivering a specific capacity of 278 mAh g−1, which can be restored to 670 mAh g−1 after high-rate cycling. The superior electrochemical performance of SnO2 nanoarray can be attributed to the unique architecture of SnO2, where highly ordered SnO2 nanopillar array provided adequate room for volumetric expansion and ensured structural integrity during the lithiation/delithiation process. The current study presents an effective approach to mitigate the inferior cyclic performance of SnO2-based electrodes, offering a realistic prospect for its applications as next-generation energy storage devices.

Funder

National Natural Science Foundation of China

Shenzhen Science and Technology Innovation Committee

Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3