Abstract
Side channel pumps are important machines for handling toxic, explosive or other dangerous liquids in various engineering processes. However, the operational reliability of these pumps is directly affected by the intensity of the pressure and velocity fluctuations, thus the flow fluctuations existing within the pump cannot be neglected because of their direct influence on the noise, vibration and harshness performance. Therefore, describing precisely the zones of highly unsteady and turbulent flow fields is a key research topic. Moreover, the size of the wrapping angle strongly affects the levels of pressure and velocity fluctuations, thus numerical calculations of the pressure and velocity fluctuation intensities in side channel pump models with different wrapping angles were conducted in this work. The results indicated that the pressure fluctuation coefficient increased gradually from the inflow to the outflow. At the interrupter, the flow experienced the most irregular flow patterns in the pump. The flow at the inflow region in both the impeller and side channel passage rendered weak pressure fluctuation intensities. All three pump cases operated with 24 blades but after one complete circulatory cycle, cases 1, 2 and 3 revealed 21, 20 and 19 regular pressure fluctuations respectively in the impeller flow passage. On the other hand, the side channel flow passage rather produced 24 regular pressure fluctuations. Furthermore, the main frequency harmonic excitations for all studied monitoring points in the impeller and side channel flow passages of the three pump cases occurred at 600 Hz (24 × fn), 1200 Hz (48 × fn), and 1800 Hz (72 × fn). For this reason, exchanged flow times between the impeller and side channel is mainly responsible for the pressure fluctuation which subsequently affects the noise and vibration generation in the side channel pump. Hence, the results could be used as a reference for Noise-Vibration-Harshness (NVH) study in turbomachinery especially modifying the side channel pump in order to improve the operational reliabilities for many engineering processes.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献