About the Mechanical Strength of Calcium Phosphate Cement Scaffolds

Author:

Bertrand Elisa12,Zankovic Sergej1ORCID,Vinke Johannes2,Schmal Hagen1ORCID,Seidenstuecker Michael1ORCID

Affiliation:

1. G.E.R.N. Center of Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center-Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany

2. Institute for Applied Biomechanics, Offenburg University, Badstraße 24, 77652 Offenburg, Germany

Abstract

For the treatment of bone defects, biodegradable, compressive biomaterials are needed as replacements that degrade as the bone regenerates. The problem with existing materials has either been their insufficient mechanical strength or the excessive differences in their elastic modulus, leading to stress shielding and eventual failure. In this study, the compressive strength of CPC ceramics (with a layer thickness of more than 12 layers) was compared with sintered β-TCP ceramics. It was assumed that as the number of layers increased, the mechanical strength of 3D-printed scaffolds would increase toward the value of sintered ceramics. In addition, the influence of the needle inner diameter on the mechanical strength was investigated. Circular scaffolds with 20, 25, 30, and 45 layers were 3D printed using a 3D bioplotter, solidified in a water-saturated atmosphere for 3 days, and then tested for compressive strength together with a β-TCP sintered ceramic using a Zwick universal testing machine. The 3D-printed scaffolds had a compressive strength of 41.56 ± 7.12 MPa, which was significantly higher than that of the sintered ceramic (24.16 ± 4.44 MPa). The 3D-printed scaffolds with round geometry reached or exceeded the upper limit of the compressive strength of cancellous bone toward substantia compacta. In addition, CPC scaffolds exhibited more bone-like compressibility than the comparable β-TCP sintered ceramic, demonstrating that the mechanical properties of CPC scaffolds are more similar to bone than sintered β-TCP ceramics.

Funder

Baden-Württemberg Ministry of Science, Research and Art

University of Freiburg

Publisher

MDPI AG

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering,Engineering (miscellaneous)

Reference47 articles.

1. [A problem outline on demographic change in the federal republic of germany];Behrendt;Notfall + Rettungsmedizin,2009

2. Demografischer wandel und krankheitshäufigkeiten;Peters;Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz,2010

3. Eurostat (2023, March 25). European Union: Age Structure in the Member States in 2019. Available online: https://de.statista.com/statistik/daten/studie/248981/umfrage/altersstruktur-in-den-eu-laendern/.

4. Destatis (2020, September 02). Mitten im Demografischen Wandel. Available online: https://www.destatis.de/DE/Themen/Querschnitt/Demografischer-Wandel/demografie-mitten-im-wandel.html.

5. U.N. (2023, February 20). World Population Prospects 2022. Available online: population.un.org.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3