Affiliation:
1. Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract
Ultra-high temperature ceramics (UHTCs) have been widely applied in many fields. In order to enhance the comprehensive properties of TaB2-based UHTCs, the first collaborative use of fine TaC particles and dispersed multi-walled carbon nanotubes (MWCNTs) was employed via spark plasma sintering (SPS) at 1700 °C. The derived UHTCs exhibited an average grain size of 1.3 μm, a relative density of 98.6%, an elastic modulus of 386.3 GPa, and a nano hardness of 21.7 GPa, leading to a greatly improved oxidation resistance with a lower linear ablation rate at −3.3 × 10−2 μm/s, and a markedly reinforced ablation resistance with mass ablation rate of −1.3 × 10−3 mg/(s·cm2). The enhanced ablation resistance was attributable to the physical pinning effect, sealing effect and self-healing effect. Thus, this study provides a potential strategy for preparation of UHTCs with bettered ablation resistance and physical properties.
Funder
National High-tech Research and Development Program