Ceramic Aggregate Material Formulated with MSWI Fly Ash and Fuel Ash for Use as Filter Media

Author:

Lu Ning1,Chen Hougang1,Chen Jiao2,Cao Yi-Fang3ORCID

Affiliation:

1. College of Safety Engineering, Chongqing University of Science and Technology, Chongqing 401331, China

2. Chongqing Telecommunication Polytechnic College, Chongqing 402247, China

3. School of Civil Engineering, The University of Sydney, Sydney, NSW 2006, Australia

Abstract

This study aimed to develop a novel filtering medium ceramic aggregate prepared using municipal solid waste incineration (MSWI) fly ash and the fuel ash from coal power plants, together with small amounts of silicon carbide foaming agent and magnesia flux as additives. For the manufacturing process, the dosage of MSWI fly ash and the sintering temperature were optimized to maximize the performance of the resulting materials. Leaching test results indicated that the heavy metal concentrations in the ceramic aggregate were significantly below the limits proposed by GB5085.3-2007, demonstrating its safety for wastewater treatment. The ammonia nitrogen removal efficiency was assessed, and the removal rate of the developed ceramic aggregate was found to be 16.4% higher than that of zeolite, making it comparable to commercial ceramic aggregate. Scanning electron microscopy and X-ray diffractometer analyses were conducted on the ceramic aggregates. The ammonia-nitrogen-removing mechanism, attributed to adsorption and ion exchange, is discussed based on the microstructural analysis results.

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3