Late Triassic Tectonic Setting in Northeastern Margin of North China Craton: Insight into Sedimentary and Apatite Fission Tracks

Author:

Tang Shuang1,Li Shichao12ORCID,Zhang Xinmei1,Zhang Daixin1,Wang Hongtao1,Nie Lijun3,Zhou Xiaodong3,Li Mengqi1

Affiliation:

1. College of Earth Sciences, Jilin University, Changchun 130061, China

2. Key Laboratory of Mineral Resources Evaluation in Northeast Asia, Ministry of Natural Resources, Changchun 130061, China

3. Survey of Regional Geological and Mineral Resource of Jilin Province, Changchun 130022, China

Abstract

The closure timing of the Paleo-Asian Ocean and the terminal stage of the Central Asian Orogenic Belt have been widely debated in the geological community. It’s known that the gradual scissor-like closure of the Paleo-Asian Ocean occurred from west to east during the Paleozoic period. However, it was not until the Triassic period that the complete closure of the ocean occurred at the northeastern margin of the North China Craton. Nevertheless, there is still much uncertainty regarding the Late Triassic tectonic setting in Northeast China. In this study, we focused on the Upper Triassic Dajianggang Formation, located in the Shuangyang area of central Jilin Province, which is situated on the northeastern margin of the North China Plate. Our aim was to determine the formation age of the Dajianggang Formation by analyzing the detrital particle composition, petrogeochemistry, detrital zircon U-Pb isotope dating, and apatite fission track thermochronology. Our results indicated that the primary sandstone provenance area of the Dajianggang Formation in the Shuangyang area is the island arc orogenic belt. The tectonic background of the sandstone provenance area is mainly a continental island arc environment. The provenance area is mostly composed of felsic rocks with sedimentary tendencies, and some of its material may have originated from the northern margin of the North China Craton or the eroded recycle orogenic belt. LA-ICP-MS U-Pb dating of detrital zircons shows that the Dajianggang Formation formed after 226.8 ± 5 Ma. Moreover, analysis of the thermal evolution history modelling shows that the Dajianggang Formation in the Shuangyang area continued to be deposited and heated in the early stage, and then experienced rapid exhumation around 30 Ma. This suggests that the study area underwent an orogenic process during the early stage of formation, but then transitioned into a post-orogenic extension period, which constrained the final closure of the Paleo-Asian Ocean prior to the Late Triassic period. In addition, our study indicates that the remote effect of the Pacific subduction did not reach the study area until 30 Ma. The central age of the detrital apatite fission track of sample 19DJ-1 is 94.2 ± 8.3 Ma, which is younger than its corresponding stratigraphic age. The two peak ages of the fission track analysis are 62.9 ± 5.4 Ma and 126 ± 11 Ma. These findings provide new evidence for the tectonic evolution of Northeast China and shed light on the Late Triassic tectonic setting, as well as the influence time of subsequent tectonic domains in the southern part of Northeast China.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3