SLAF-Seq Technology-Based Genome-Wide Association and Population Structure Analyses of Ancient Camellia sinensis (L.) Kuntze in Sandu County, China

Author:

Cheng Linan,Dong Xuan,Liu Qing,Wang Runying,Li YanORCID,Huang Xiaozhen,Zhao YichenORCID

Abstract

Guizhou is one of the centers of origin for the tea plant (Camellia sinensis (L.) Kuntze). The location contains highly diverse ancient tea plant germplasms in its Sandu Aquarium Autonomous County. After a prolonged course of continuous evolution, these ancient plants have gained a wealth of genetic diversity. Their resources could be harnessed for the selection and breeding of fine varieties of tea plant, as well as for the effective utilization and protection of germplasm resources. In this study, the specific locus-amplified fragment (SLAF) sequencing method was used to analyze the population structure and conduct a genome-wide association study (GWAS) for the three traits of 125 ancient tea plants in the Sandu County of Guizhou province, China. A total of 807,743 SLAF tags and 9,428,309 population single-nucleotide polymorphism (SNP) tags were obtained. The results of the phylogenetic tree analysis, cluster analysis, and principal component analysis showed that 125 germplasms were clustered into four groups, and the heterozygosity rates for groups I, II, III, and IV, were 0.211, 0.504, 0.144, and 0.192, respectively. Additionally, GWAS analysis suggested that seven candidate genes were related to altitude at the origin of the plants, eight were related to tree shape, and three were associated with leaf color. In this study, we clarified genetic relationships between four ancient tea plant-producing areas in Sandu County and obtained candidate genes related to their development associated with altitude, tree shape, and leaf color. The study provides useful information for tea plant-breeding development and molecular identification.

Funder

National Natural Science Foundation of China

Zunyi Tea Industry Supporting Projects

Science and Technology Support Program (Agriculture) of Guizhou, China

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3