Present and Future Losses of Storage in Large Reservoirs Due to Sedimentation: A Country-Wise Global Assessment

Author:

Perera DumindaORCID,Williams Spencer,Smakhtin Vladimir

Abstract

Reservoir sedimentation is often seen as a site-specific process and is usually assessed at an individual reservoir level. At the same time, it takes place everywhere in the world. However, estimates of storage losses globally are largely lacking. In this study, earlier proposed estimates of sedimentation rates are applied, for the first time, to 47,403 large dams in 150 countries to estimate cumulative reservoir storage losses at country, regional, and global scales. These losses are estimated for the time horizons of 2022, 2030, and 2050. It is shown that 6316 billion m3 of initial global storage in these dams will decline to 4665 billion m3 causing a 26% storage loss by 2050. By now, major regions of the world have already lost 13–19% of their initially available water storage. Asia-Pacific and African regions will likely experience relatively smaller storage losses in the next 25+ years compared to the Americas or Europe. On a country level, Seychelles, Japan, Ireland, Panama, and the United Kingdom will experience the highest water storage losses by 2050, ranging between 35% and 50%. In contrast, Bhutan, Cambodia, Ethiopia, Guinea, and Niger will be the five least affected countries losing less than 15% of storage by 2050. The decrease in the available storage by 2050 in all countries and regions will challenge many aspects of national economies, including irrigation, power generation, and water supply. The newly built dams will not be able to offset storage losses to sedimentation. The paper is an alert to this creeping global water challenge with potentially significant development implications.

Funder

UNU-INWEH

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3