Gaining Insights into Conceptual Models: A Graph-Theoretic Querying Approach

Author:

Medvedev DannyORCID,Shani UriORCID,Dori DovORCID

Abstract

Modern complex systems include products and services that comprise many interconnected pieces of integrated hardware and software, which are expected to serve humans interacting with them. As technology advances, expectations of a smooth, flawless system operation grow. Model-based systems engineering, an approach based on conceptual models, copes with this challenge. Models help construct formal system representations, visualize them, understand the design, simulate the system, and discover design flaws early on. Modeling tools can benefit tremendously from querying capabilities that enable gaining deep insights into system aspects that direct model observations do not reveal. Querying mechanisms can unveil and explain cause-and-effect phenomena, identify central components, and estimate impacts or risks associated with changes. Being connected networks of system elements, models can be effectively represented as graphs, to which queries are applied. Capitalizing on established graph-theoretic algorithms to solve a large variety of problems can elevate the modeling experience to new levels. To utilize this rich set of capabilities, one must convert the model into a graph and store it in a graph database with no significant loss of information. Applying the appropriate algorithms and translating the query response back to the original intelligible and meaningful diagrammatic and textual model representation is most valuable. We present and demonstrate a querying approach of converting Object-Process Methodology (OPM) ISO 19450 models into graphs, storing them in a Neo4J graph database, and performing queries that answer complex questions on various system aspects, providing key insights into the modeled system or phenomenon and helping to improve the system design.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference51 articles.

1. Object-Process Methodology—A Holistic Systems Paradigm;Dori,2002

2. Model-Based Systems Engineering with OPM and SysML;Dori,2016

3. ISO/PAS 19450:2015: Automation systems and integration—Object-Process Methodologyhttps://www.iso.org/obp/ui/#iso:std:iso:pas:19450:ed-1:v1:en

4. OPCloudhttps://opcloud-trial.firebaseapp.com/

5. Object-process methodology, OPM ISO 19450—OPCloud and the evolution;Dori;PPI SyEN,2018

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3