Numerical Simulations of Polymer Solution Droplet Impact on Surfaces of Different Wettabilities

Author:

Tembely ,Vadillo ,Soucemarianadin ,Dolatabadi

Abstract

This paper presents a physically based numerical model to simulate droplet impact, spreading, and eventually rebound of a viscoelastic droplet. The simulations were based on the volume of fluid (VOF) method in conjunction with a dynamic contact model accounting for the hysteresis between droplet and substrate. The non‐Newtonian nature of the fluid was handled using FENE‐CR constitutive equations which model a polymeric fluid based on its rheological properties. A comparative simulation was carried out between a Newtonian solvent and a viscoelastic dilute polymer solution droplet. Droplet impact analysis was performed on hydrophilic and superhydrophobic substrates, both exhibiting contact angle hysteresis. The effect of substrates’ wettability on droplet impact dynamics was determined the evolution of the spreading diameter. While the kinematic phase of droplet spreading seemed to be independent of both the substrate and fluid rheology, the recoiling phase seemed highly influenced by those operating parameters. Furthermore, our results implied a critical polymer concentration in solution, between 0.25 and 2.5% of polystyrene (PS), above which droplet rebound from a superhydrophobic substrate could be curbed. The present model could be of particular interest for optimized 2D/3D printing of complex fluids.

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3