A Systematic Study on Reinforcement Learning Based Applications

Author:

Sivamayil Keerthana1ORCID,Rajasekar Elakkiya12ORCID,Aljafari Belqasem3,Nikolovski Srete4,Vairavasundaram Subramaniyaswamy1,Vairavasundaram Indragandhi5ORCID

Affiliation:

1. School of Computing, SASTRA Deemed University, Thanjavur 613401, India

2. Department of Computer Science, BITS Pilani, Dubai Campus, Dubai 345055, United Arab Emirates

3. Department of Electrical Engineering, Najran University, Najran 11001, Saudi Arabia

4. Power Engineering Department, Faculty of Electrical Engineering, Computer Science and Information Technology, J. J. Strossmayer University of Osijek, K. Trpimira 2B, HR-31000 Osijek, Croatia

5. School of Electrical Engineering, Vellore Institute of Technology, Vellore 632014, India

Abstract

We have analyzed 127 publications for this review paper, which discuss applications of Reinforcement Learning (RL) in marketing, robotics, gaming, automated cars, natural language processing (NLP), internet of things security, recommendation systems, finance, and energy management. The optimization of energy use is critical in today’s environment. We mainly focus on the RL application for energy management. Traditional rule-based systems have a set of predefined rules. As a result, they may become rigid and unable to adjust to changing situations or unforeseen events. RL can overcome these drawbacks. RL learns by exploring the environment randomly and based on experience, it continues to expand its knowledge. Many researchers are working on RL-based energy management systems (EMS). RL is utilized in energy applications such as optimizing energy use in smart buildings, hybrid automobiles, smart grids, and managing renewable energy resources. RL-based energy management in renewable energy contributes to achieving net zero carbon emissions and a sustainable environment. In the context of energy management technology, RL can be utilized to optimize the regulation of energy systems, such as building heating, ventilation, and air conditioning (HVAC) systems, to reduce energy consumption while maintaining a comfortable atmosphere. EMS can be accomplished by teaching an RL agent to make judgments based on sensor data, such as temperature and occupancy, to modify the HVAC system settings. RL has proven beneficial in lowering energy usage in buildings and is an active research area in smart buildings. RL can be used to optimize energy management in hybrid electric vehicles (HEVs) by learning an optimal control policy to maximize battery life and fuel efficiency. RL has acquired a remarkable position in robotics, automated cars, and gaming applications. The majority of security-related applications operate in a simulated environment. The RL-based recommender systems provide good suggestions accuracy and diversity. This article assists the novice in comprehending the foundations of reinforcement learning and its applications.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3