Thermoeconomic Optimization of Steam Pressure of Heat Recovery Steam Generator in Combined Cycle Gas Turbine under Different Operation Strategies

Author:

Wang Zhen,Duan Liqiang

Abstract

The optimization of the steam parameters of the heat recovery steam generators (HRSG) of Combined Cycle Gas Turbines (CCGT) has become one of the important means to reduce the power generation cost of combined cycle units. Based on the structural theory of thermoeconomics, a thermoeconomic optimization model for a triple pressure reheat HRSG is established. Taking the minimization of the power generation cost of the combined cycle system as the optimization objective, an optimization algorithm based on three factors and six levels of orthogonal experimental samples to determine the optimal solution for the high, intermediate and low pressure steam pressures under different gas turbine (GT) operation strategies. The variation law and influencing factors of the system power generation cost with the steam pressure level under all operation strategies are analyzed. The research results show that the system power generation cost decreases as the GT load rate increases, T4 plays a dominant role in the selection of the optimal pressure level for high pressure (HP) steam and, in order to obtain the optimum power generation cost, the IGV T3-650-F mode should be adopted to keep the T4 at a high level under different GT load rates.

Funder

National Science and Technology Major Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference35 articles.

1. Off-design performance characteristics study on ISCC system with solar direct steam generation system

2. Comparative Analysis of Off-Design Performance Characteristics of Single and Two-Shaft Industrial Gas Turbines

3. Influence of inlet guide vane control on combined cycle power plant transients//ASME Turbo Expo 2002: Power for Land, Sea, and Air;Domachovski;Am. Soc. Mech. Eng.,2002

4. Exergy-based performance analysis of the heavy-duty gas turbine in part-load operating conditions

5. Factors influencing efficiency of heat recovery boiler in gas-steam combined cycle;Yang;J. Shenyang Inst. Technol. (Nat. Sci. Ed.),2018

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3