Re-Thinking Soil Bioengineering to Address Climate Change Challenges

Author:

Mickovski Slobodan B.ORCID

Abstract

Soil bioengineering includes the sustainable use of vegetation for civil engineering purposes, including addressing climate change challenges. Previous research in this area has been focused on determination of the strength and stability that vegetation provides for the soil it grows in. The industry, on the other hand, has concentrated on mainly empirical approaches in the design and construction of nature-based solutions. The aim of this paper is to attempt a reconciliation of the scientific and technical aspects of soil bioengineering with a view of proposing broad guidelines for management of soil bioengineering projects aimed at combatting climate change and achievement of the United Nations Sustainable Development Goals (UN SDGs). More than 20 case studies of civil engineering projects addressing climate change challenges, such as erosion, shallow landslides, and flooding, were critically reviewed against the different project stages and the UN SDGs. The gaps identified in the review are addressed from civil engineering and asset management perspectives, with a view of implementing the scientific and technical nexus in the future. Recommendations are formulated to help civil engineers embrace the multidisciplinary nature of soil bioengineering and effectively address climate change challenges in the future.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3