Investigation on the Separation Performance and Multiparameter Optimization of Decanter Centrifuges

Author:

Kang Xiang,Cai Liuxi,Li Yun,Gao Xiufeng,Bai Guangqian

Abstract

Decanter centrifuges are widely used for solid–liquid separation. Although parameter analysis for decanter centrifuges was performed by numerical simulation in previous studies, some structural parameters are rarely mentioned and investigated. At the same time, the results obtained by the single-parameter analysis in previous studies are difficult to truly realize the comprehensive performance optimization of decanter centrifuges. In this paper, the influences of the window structure and bowl–conveyor gap on the separation performance are systematically analyzed with the employment of a numerical computation method. The results show that the increase in the window angle and window height will accelerate the flow of the upper layer, while the increase in the bowl–conveyor gap may make particles flow through it directly and further form a solid retention zone. Both of the structural changes will lead to deterioration of the separation performance. On the basis of numerical simulation analysis, a genetic algorithm-based method for multiparameter optimization is proposed in this paper. Parameter optimization shows that bowl speed and feed flow rate have the most significant effects on the separation performance and power consumption. Compared with the minimal specific power in the first generation, the optimized specific power is reduced by 15.7%, and the cake solid content merely decreases by 0.044%.

Funder

China Postdoctoral Science Foundation

Fundamental Research Fund of the Central Universities

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Reference25 articles.

1. Decanter Centrifuge Handbook;Records,2001

2. Numerical simulation of the influence of the ratio of length to diameter on internal flow field of horizontal settling centrifuge;Wu;Environ. Eng.,2012

3. A novel approach for determining the flow patterns in centrifuges by means of Laser-Doppler-Anemometry

4. Numerical simulation on pressure field in a decanter centrifuge;Dong;Chem. Ind. Eng. Prog.,2014

5. Numerical simulation and analysis on flow field in a decanter centrifuge based on the Euler model;Fu;Chem. Ind. Eng. Prog.,2014

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3