Expressing the Pro-Apoptotic Reaper Protein via Insertion into the Structural Open Reading Frame of Sindbis Virus Reduces the Ability to Infect Aedes aegypti Mosquitoes

Author:

Carpenter Alexis,Santos Scott R.,Clem Rollie J.ORCID

Abstract

Arboviruses continue to threaten a significant portion of the human population, and a better understanding is needed of the determinants of successful arbovirus infection of arthropod vectors. Avoiding apoptosis has been shown to be one such determinant. Previous work showed that a Sindbis virus (SINV) construct called MRE/rpr that expresses the Drosophila pro-apoptotic protein Reaper via a duplicated subgenomic promoter had a reduced ability to orally infect Aedes aegypti mosquitoes at 3 days post-blood meal (PBM), but this difference diminished over time as virus variants containing deletions in the inserted reaper gene rapidly predominated. In order to further clarify the effect of midgut apoptosis on disseminated infection in Ae. aegypti, we constructed MRE/rprORF, a version of SINV containing reaper inserted into the structural open reading frame (ORF) as an in-frame fusion. MRE/rprORF successfully expressed Reaper, replicated similarly to MRE/rpr in cell lines, induced apoptosis in cultured cells, and caused increased effector caspase activity in mosquito midgut tissue. Mosquitoes that fed on blood containing MRE/rprORF developed significantly less midgut and disseminated infection when compared to MRE/rpr or a control virus up to at least 7 days PBM, when less than 50% of mosquitoes that ingested MRE/rprORF had detectable disseminated infection, compared with around 80% or more of mosquitoes fed with MRE/rpr or control virus. However, virus titer in the minority of mosquitoes that became infected with MRE/rprORF was not significantly different from control virus. Deep sequencing of virus populations from ten mosquitoes infected with MRE/rprORF indicated that the reaper insert was stable, with only a small number of point mutations and no deletions being observed at frequencies greater than 1%. Our results indicate that expression of Reaper by this method significantly reduces infection prevalence, but if infection is established then Reaper expression has limited ability to continue to suppress replication.

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3