Molecular Structure and Variation Characteristics of the Plastomes from Six Malus baccata (L.) Borkh. Individuals and Comparative Genomic Analysis with Other Malus Species

Author:

Wang Xun1,Zhang Ruifen2,Wang Daru1,Yang Chen1,Zhang Yawen1,Sui Mengyi1,Quan Jian3,Sun Yi3,You Chunxiang1,Shen Xiang1

Affiliation:

1. State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, College of Horticultural Science and Engineering, Shandong Agricultural University, Taian 271018, China

2. Qingdao Academy of Agricultural Sciences, Qingdao 266100, China

3. China National Botanical Garden, Beijing 100093, China

Abstract

Malus baccata (L.) Borkh. is an important wild species of Malus. Its rich variation types and population history are not well understood. Chloroplast genome mining plays an active role in germplasm identification and genetic evolution. In this study, by assembly and annotation, six complete cp genome sequences, ranging in size from 160,083 to 160,295 bp, were obtained. The GC content of stable IR regions (42.7%) was significantly higher than that of full length (36.5%) and SC regions (LSC-34.2%, SSC-30.4%). Compared with other Malus species, it was found that there were more sites of polymorphisms and hotspots of variation in LSC and SSC regions, with high variation sites including trnR/UCU-atpA, trnT/UGU-trnL/UAA, ndhF-rpl32 and ccsA-ndhD. The intraspecific and interspecific collinearity was good, and no structural rearrangement was observed. A large number of repeating elements and different boundary expansions may be involved in shaping the cp genome size. Up to 77 or 78 coding genes were annotated in the cp genomes of M. baccata, and high frequency codons such as UUA (Leu), GCU (Ala) and AGA (Arg) were identified by relative synonymous codon usage analysis. Phylogeographic analysis showed that 12 individuals of M. baccata clustered into three different groups with complex structure, whereas variant xiaojinensis (M.H. Cheng & N.G. Jiang) was not closely related to M. baccata evolutionarily. The phylogenetic analysis suggested that two main clades of different M. baccata in the genus Malus were formed and that I and II diverged about 9.7 MYA. In conclusion, through cp genome assembly and comparison, the interspecific relationships and molecular variations of M. baccata were further elucidated, and the results of this study provide valuable information for the phylogenetic evolution and germplasm conservation of M. baccata and Malus.

Funder

National Natural Science Foundation of China

Shandong Provincial Natural Science Foundation

Fruit Industry System of Shandong Province

Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3