Interferon-α-Induced Dendritic Cells Generated with Human Platelet Lysate Exhibit Elevated Antigen Presenting Ability to Cytotoxic T Lymphocytes

Author:

Date Ippei,Koya Terutsugu,Sakamoto TakuyaORCID,Togi MisaORCID,Kawaguchi Haruhiko,Watanabe Asuka,Kato Tomohisa,Shimodaira ShigetakaORCID

Abstract

Given the recent advancements of immune checkpoint inhibitors, there is considerable interest in cancer immunotherapy provided through dendritic cell (DC)-based vaccination. Although many studies have been conducted to determine the potency of DC vaccines against cancer, the clinical outcomes are not yet optimal, and further improvement is necessary. In this study, we evaluated the potential ability of human platelet lysate (HPL) to produce interferon-α-induced DCs (IFN-DCs). In the presence of HPL, IFN-DCs (HPL-IFN-DCs) displayed high viability, yield, and purity. Furthermore, HPL-IFN-DCs displayed increased CD14, CD56, and CCR7 expressions compared with IFN-DCs produced without HPL; HPL-IFN-DCs induced an extremely higher number of antigen-specific cytotoxic T lymphocytes (CTLs) than IFN-DCs, which was evaluated with a human leukocyte antigen (HLA)-restricted melanoma antigen recognized by T cells 1 (MART-1) peptide. Additionally, the endocytic and proteolytic activities of HPL-IFN-DCs were increased. Cytokine production of interleukin (IL)-6, IL-10, and tumor necrosis factor (TNF)-α was also elevated in HPL-IFN-DCs, which may account for the enhanced CTL, endocytic, and proteolytic activities. Our findings suggest that ex-vivo-generated HPL-IFN-DCs are a novel monocyte-derived type of DC with high endocytic and proteolytic activities, thus highlighting a unique strategy for DC-based immunotherapies.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3