Cellular Immune Responses in Rainbow Trout (Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV)

Author:

Veenstra Kimberly A.,Hodneland Kjartan,Fischer Susanne,Takehana Kota,Belmonte Rodrigo,Fischer Uwe

Abstract

Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3