Targeted Delivery of Mannosylated Nanoparticles Improve Prophylactic Efficacy of Immersion Vaccine against Fish Viral Disease

Author:

Zhu Bin,Zhang Chen,Zhao Zhao,Wang Gao-Xue

Abstract

Immersion vaccination is considered as the most effective method for juvenile fish in preventing viral disease, due to its convenience for mass vaccination and stress-free administration. However, immune responses following immersion vaccination are generally less robust and of shorter duration than those induced through intraperitoneal injection. Herein, to improve the efficacy of the immersion vaccine, we constructed a targeted single-walled carbon nanotubes-based immersion vaccine delivery system (CNTs-M-VP7), the surface of which are modified with mannose to allow antigen-presenting cells’ (APCs) targeting. The targeting ability of CNTs-M-VP7 was confirmed in vivo and in vitro. Critically, this immersion CNTs-M-VP7 vaccine could cross into the fish body through mucosal tissues (skin, gill, and intestine), and then present to immune-related tissues. Moreover, CNTs-M-VP7 could significantly induce the maturation and presenting process of APCs, which would then trigger robust immune responses. Altogether, this study demonstrates that the single-walled carbon nanotubes (SWCNTs)-based targeted nanovaccine delivery system shows the potential to be an effective prophylactic against fish viral disease.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3