Immunization Effects of a Novel α-Synuclein-Based Peptide Epitope Vaccine in Parkinson’s Disease-Associated Pathology

Author:

Park Jun Sung1,Ahmad Riaz1ORCID,Choe Kyonghwan12ORCID,Kang Min Hwa1,Park Tae Ju3,Kim Myeong Ok14

Affiliation:

1. Division of Life Sciences and Applied Life Science (BK 21 Four), College of Natural Science, Gyeongsang National University, Jinju 52828, Republic of Korea

2. Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNs), Maastricht University, 6229 ER Maastricht, The Netherlands

3. Haemato-Oncology/Systems Medicine Group, Paul O’Gorman Leukaemia Research Centre, Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences (MVLS), University of Glasgow, Glasgow G12 0ZD, UK

4. Alz-Dementia Korea Co., Jinju 52828, Republic of Korea

Abstract

Parkinson’s disease (PD) is a chronic neurodegenerative disease that affects the central nervous system, specifically the motor system. It is mainly caused by the loss of dopamine due to the accumulation of α-synuclein (α-syn) protein in the striatum and substantia nigra pars compacta (SNpc). Previous studies have reported that immunization may be a potential preventive strategy for neurodegenerative diseases such as Alzheimer’s disease (AD) and amyotrophic lateral sclerosis (ALS). Therefore, the aim of the study was to design an α-syn specific epitope vaccine and investigate its effect in PD-related pathophysiology using an α-syn-induced mouse model. We used an in silico model to identify and design a non-toxic α-syn-based peptide epitope vaccine and, to overcome poor immunogenicity, the vaccine was coupled with immunogenic carrier proteins, i.e., ovalbumin (OVA) and keyhole limpet haemocyanin (KLH). Our results showed that vaccinated PD mouse models, especially with vaccines with carrier proteins, improved in motor functions compared with the non-vaccinated PD model. Additionally, the vaccinated groups showed increased immunoglobulin G (IgG) levels in the spleen and plasma as well as decreased interleukin-10 (IL-10) levels in the plasma. Furthermore, vaccinated groups, especially OVA and KLH groups, showed decrease in α-syn levels and increased dopamine-related markers, i.e., tyrosine hydroxylase (TH), vesicle monoamine transporter 2 (VMAT2), and dopamine transporter (DAT), and autophagy activities in the striatum and SNpc. Lastly, our data showed decreased neuroinflammation by reducing the activation of microglia and astrocytes and pro-inflammatory cytokines in the immunized groups, especially with OVA and KLH carrier proteins. Overall, these results suggest that vaccination, especially with immunogenic carrier proteins, is effective in reducing the accumulation of α-syn aggregates in the brain and ameliorate PD-related pathophysiology. Hence, further development of this approach might have a potential role in preventing the development of PD.

Funder

Korean Government

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3