E4orf1 Suppresses E1B-Deleted Adenovirus Vaccine-Induced Immune Responses

Author:

Sangare Kotou,Helmold Hait Sabrina,Moore Madison,Hogge Christopher,Hoang Tanya,Rahman Mohammad ArifORCID,Venzon David J.ORCID,LaBranche Celia,Montefiori David,Robert-Guroff Marjorie,Thomas Michael A.ORCID

Abstract

As demonstrated by the recent COVID pandemic, vaccines can reduce the burden arising from infectious agents. Adenoviruses (Ads) with deletion of the early region 1B55K (ΔE1B Ad) are currently being explored for use in vaccine delivery. ΔE1B Ads are different from Ads with deletions in early region 1 and early region 3 (ΔE1/E3) used in most Ad vaccine vectors in that they contain the Ad early region 1A (E1A), and therefore the ability to replicate. Common to almost all Ads that are being explored for clinical use is the Ad early region 4 (E4). Among the E4 genes is open reading frame 1 (E4orf1), which mediates signals through the PI3-kinase/Akt pathway that is known to modulate immune responses. This suggests that E4orf1 might also modulate immune responses, although it has remained unexplored in ΔE1B Ad. Here, we show that cells infected with an E1B55K and E4orf1-deleted (ΔE41) Ad exhibited reduced levels of phosphorylated Akt (Ser473 and Thr308)) and expressed different intrinsic innate immune cytokines from those induced in cells infected with an E4orf1-containing, ΔE1B parental Ad that exhibited elevated levels of phosphorylated Akt. Rhesus macaques immunized with a ΔE41 Ad that expressed rhFLSC (HIV-1BaL gp120 linked to rhesus CD4 D1 and D2), exhibited higher levels of rhFLSC-specific interferon γ-producing memory T-cells, higher titers of rhFLSC-specific IgG1 binding antibody in serum, and antibodies able to mediate antibody-dependent cellular cytotoxicity (ADCC) with greater killing capacity than the ΔE1B Ad. Therefore, E4orf1, perhaps by acting through the PI3-kinase/Akt pathway, limits intrinsic innate and system-wide adaptive immune responses that are important for improved ΔE1B Ad-based vaccines.

Funder

National Institute of Allergy and Infectious Diseases

Publisher

MDPI AG

Subject

Pharmacology (medical),Infectious Diseases,Drug Discovery,Pharmacology,Immunology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3