Numerical Study of Step Drill Structure on Machining Damage in Drilling of CFRP/Ti Stacks

Author:

Chen Chen1ORCID,Zhao Qing1,Wang Aixu1,Zhang Jing1,Qu Qing1,Shi Zhanli1

Affiliation:

1. Naval Architecture and Ocean Engineering College, Dalian Maritime University, Dalian 116026, China

Abstract

The tool structure is an important factor affecting the damage of CFRP/Ti stacks machining. However, the impact of tool structure on the formation process of stacks hole damage cannot be fully revealed through experimental methods alone. In contrast, finite element simulation can effectively overcome the limitations of experiments. In this study, a numerical simulation model is established to investigate the relationship between step drill structure and formation process of CFRP/Ti stacks hole damage. Based on this, the research discusses the effect of step drill structure on the burr height of Ti layer, delamination of CFRP, aperture deviation, defects in hole surface. The results show that when the stacking sequence is CFRP to Ti, the burr height of Ti at hole exit decreases first and then increases with the rising of the ratio of primary drill bit diameter to secondary drill bit diameter (kd). When kd is 0.6, the burr height of Ti at hole exit is the lower. As kd increasing from 0.4 to 1.0, delamination factor of CFRP increases by 2.57%, which are affected little by the step drill structure due to the support of Ti. Besides, the aperture size deviation decreases first then increases with the rising of kd, and the minimum aperture size deviation is 2.09 μm when kd is 0.6. In addition, as kd is 0.6, the hole wall defect is fewer. In conclusion, step drill with kd of 0.6 is suitable for drilling of CFRP/Ti stacks.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3