In-Situ Grown Nanohydroxyapatite on Graphene Oxide Nanoscrolls for Modulated Physicochemical Properties of Poly (Caprolactone) Composites

Author:

Mambiri Lillian Tsitsi1,Broussard Gabrielle1,Smith Ja’Caleb1,Depan Dilip1ORCID

Affiliation:

1. Chemical Engineering Department, Institute for Materials Research and Innovation, University of Louisiana at Lafayette, P.O. Box 44130, Lafayette, LA 70504-4130, USA

Abstract

Polymer composites with exceptional bioactivity and controlled in vitro degradation are crucial in tissue engineering. A promising approach involves combining graphene oxide nanoscrolls (GONSs) and nanohydroxyapatite (nHA) with polycaprolactone (PCL). The synergy of these components enables the mineralization of nHA within GONSs through a two-step process: first, oxygen-containing anionic groups in the GONSs anchor Ca2+ ions, followed by the formation of dispersed nHA through chelation with CaHPO42− via electrovalent bonding. A thermal analysis of the scaffolds’ morphology and microstructure was conducted via DSC and SEM imaging. Its enhanced physical properties are attributed to interactions between PCL and nHA–GONSs, as confirmed by an FTIR analysis showing strong interfacial bonding. Enzymatic degradation studies demonstrated reduced weight loss in PCL–nHA–GONS composites over 21 days, highlighting GONSs’ role in enhancing dimensional stability and reinforcement. An EDS analysis post-degradation revealed increased Ca2+ deposition on scaffolds with nHA–GONSs, indicating improved biopolymer–bioceramic interaction facilitated by the GONSs’ scrolled structure. This research offers a straightforward yet effective method for functionalizing GONSs with biologically beneficial nHA, potentially advancing graphene-based biomaterial development.

Funder

Louisiana Board of Regents Support Fund

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3