Potential Use of Rendering Mortar Waste Powder as a Cement Replacement Material: Fresh, Mechanical, Durability and Microstructural Properties

Author:

Abadel Aref A.1ORCID,Nasr Mohammed Salah2ORCID,Shubbar Ali3ORCID,Hashim Tameem Mohammed4ORCID,Tuladhar Rabin5

Affiliation:

1. Department of Civil Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia

2. Technical Institute of Babylon, Al-Furat Al-Awsat Technical University (ATU), Babylon 51015, Iraq

3. School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 5UG, UK

4. Department of Building and Construction Techniques Engineering, Al-Mustaqbal University College, Hillah 51001, Iraq

5. College of Science & Engineering, James Cook University, Townsville, QLD 4811, Australia

Abstract

The difficulty of decomposing solid waste over time has made it a significant global problem because of its environmental impact and the need for large areas for disposal. Among these residues is the waste of the rendering mortar that is produced (falls to the ground) while applied to wall surfaces. The quantity of these materials may reach 200 to 500 g/m2. As a result of local urban development (in Iraq), thousands of tons of these wastes are produced annually. On the other hand, the emission of greenhouse gases in the cement industry has had a great environmental impact. One of the solutions to this problem is to reduce the cement content in the mix by replacing it with less emissive materials. Residues from other industries are considered a relatively ideal option due to their disposal on the one hand and the reduction of harmful emissions of the cement industry on the other hand. Therefore, this research aims to reuse rendering mortar waste powder (RMWP) as a possible alternative to cement in mortar. RMWP replaced the cement in proportions (0, 10, 15, 20, 25, and 30% by weight). The flow rate, flexural and compressive strengths, ultrasonic pulse velocity, bulk density, dynamic modulus of elasticity, electrical resistivity, and water absorption tests of the produced mortar were executed. Microstructural analysis of the produced mortar was also investigated. Results indicated that, for sustainable development, an eco-friendly mortar can be made by replacing cement with RMWP at a rate of 15%, resulting in a 17% decrease in compressive strength while maintaining or improving durability properties. Moreover, the microstructure became denser and more homogeneous in the presence of RMWP.

Funder

King Saud University

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3