VIS-IR Spectroscopy of Mixtures of Water Ice, Organic Matter, and Opaque Mineral in Support of Small Body Remote Sensing Observations

Author:

Ciarniello MauroORCID,Moroz Lyuba V.,Poch OlivierORCID,Vinogradoff Vassilissa,Beck Pierre,Rousseau BatisteORCID,Istiqomah Istiqomah,Sultana RobinORCID,Raponi AndreaORCID,Filacchione GianricoORCID,Kappel DavidORCID,Pommerol Antoine,Schröder Stefan E.,Pilorget Cedric,Quirico EricORCID,Mennella VitoORCID,Schmitt BernardORCID

Abstract

Visual-to-infrared (VIS-IR) remote sensing observations of different classes of outer solar system objects indicate the presence of water ice and organics. Here, we present laboratory reflectance spectra in the 0.5–4.2 μm spectral range of binary particulate mixtures of water ice, organics analogue (kerite), and an opaque iron sulphide phase (pyrrhotite) to investigate the spectral effects of varying mixing ratios, endmember grain size, and mixing modality. The laboratory spectra are also compared to different implementations of the Hapke reflectance model (Hapke, 2012). We find that minor amounts (≲1 wt%) of kerite (investigated grain sizes of 45–63 μm and <25 μm) can remain undetected when mixed in coarse-grained (67 ± 31 μm) water ice, suggesting that organics similar to meteoritic insoluble organic matter (IOM) might be characterized by larger detectability thresholds. Additionally, our measurements indicate that the VIS absolute reflectance of water ice-containing mixtures is not necessarily monotonically linked to water ice abundance. The latter is better constrained by spectral indicators such as the band depths of water ice VIS-IR diagnostic absorptions and spectral slopes. Simulation of laboratory spectra of intimate mixtures with a semi-empirical formulation of the Hapke model suggests that simplistic assumptions on the endmember grain size distribution and shape may lead to estimated mixing ratios considerably offset from the nominal values. Finally, laboratory spectra of water ice grains with fine-grained pyrrhotite inclusions (intraparticle mixture) have been positively compared with a modified version of the Hapke model from Lucey and Riner (2011).

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3