Abstract
Nickel laterite ore is used to produce nickel metal, predominantly to manufacture stainless steel as well as nickel sulfate, a key ingredient in the batteries that drive electric vehicles. Nickel laterite production is on the rise and surpassing conventional sulfide deposits. The efficiency of mining and processing nickel laterites is defined by their mineralogical composition. Typical profiles of nickel laterites are divided into a saprolite and a laterite horizon. Nickel is mainly concentrated and hosted in a variety of secondary oxides, hydrous Mg silicates and clay minerals like smectite or lizardite in the saprolite horizon, whereas the laterite horizon can host cobalt that could be extracted as a side product. For this case study, 40 samples from both saprolite and laterite horizons were investigated using X-ray diffraction (XRD) in combination with statistical methods such as cluster analysis. Besides the identification of the different mineral phases, the quantitative composition of the samples was also determined with the Rietveld method. Data clustering of the samples was tested and allows a fast and easy separation of the different lithologies and ore grades. Mineralogy also plays a key role during further processing of nickel laterites to nickel metal. XRD was used to monitor the mineralogy of calcine, matte and slag. The value of mineralogical monitoring for grade definition, ore sorting, and processing is explained in the paper.
Subject
Geology,Geotechnical Engineering and Engineering Geology
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献