Modelling Cancer Metastasis in Drosophila melanogaster

Author:

Sharpe Joanne L.1ORCID,Morgan Jason1,Nisbet Nicholas1,Campbell Kyra1ORCID,Casali Andreu2

Affiliation:

1. School of Biosciences, The University of Sheffield, Sheffield S10 2TN, UK

2. Departament de Ciències Mèdiques Bàsiques, Universitat de Lleida and IRBLleida, Av. Alcalde Rovira Roure, 80, 25198 Lleida, Spain

Abstract

Cancer metastasis, the process by which tumour cells spread throughout the body and form secondary tumours at distant sites, is the leading cause of cancer-related deaths. The metastatic cascade is a highly complex process encompassing initial dissemination from the primary tumour, travel through the blood stream or lymphatic system, and the colonisation of distant organs. However, the factors enabling cells to survive this stressful process and adapt to new microenvironments are not fully characterised. Drosophila have proven a powerful system in which to study this process, despite important caveats such as their open circulatory system and lack of adaptive immune system. Historically, larvae have been used to model cancer due to the presence of pools of proliferating cells in which tumours can be induced, and transplanting these larval tumours into adult hosts has enabled tumour growth to be monitored over longer periods. More recently, thanks largely to the discovery that there are stem cells in the adult midgut, adult models have been developed. We focus this review on the development of different Drosophila models of metastasis and how they have contributed to our understanding of important factors determining metastatic potential, including signalling pathways, the immune system and the microenvironment.

Funder

Wellcome Trust

National Centre for the Replacement, Refinement and Reduction of Animals in Research

Spanish Ministry of Science and Innovation

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3