ADFSNet: An Adaptive Domain Feature Separation Network for the Classification of Wheat Seed Using Hyperspectral Images

Author:

Zhao Xin1,Liu Shuo1,Que Haotian1,Huang Min1ORCID,Zhu Qibing1

Affiliation:

1. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China

Abstract

Wheat seed classification is a critical task for ensuring crop quality and yield. However, the characteristics of wheat seeds can vary due to variations in climate, soil, and other environmental factors across different years. Consequently, the present classification model is no longer adequate for accurately classifying novel samples. To tackle this issue, this paper proposes an adaptive domain feature separation (ADFS) network that utilizes hyperspectral imaging techniques for cross-year classification of wheat seed varieties. The primary objective is to improve the generalization ability of the model at a minimum cost. ADFS leverages deep learning techniques to acquire domain-irrelevant features from hyperspectral data, thus effectively addressing the issue of domain shifts across datasets. The feature spaces are divided into three parts using different modules. One shared module aligns feature distributions between the source and target datasets from different years, thereby enhancing the model’s generalization and robustness. Additionally, two private modules extract class-specific features and domain-specific features. The transfer mechanism does not learn domain-specific features to reduce negative transfer and improve classification accuracy. Extensive experiments conducted on a two-year dataset comprising four wheat seed varieties demonstrate the effectiveness of ADFS in wheat seed classification. Compared with three typical transfer learning networks, ADFS can achieve the best accuracy of wheat seed classification with small batch samples updated, thereby addressing new seasonal variability.

Funder

National Nature Science Foundation of China

Fundamental Research Funds for the Central Universities

High level project of Jiangsu Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3