Car Bumper Effects in ADAS Sensors at Automotive Radar Frequencies

Author:

Expósito Isabel1,Chin Ingo2,García Sánchez Manuel1ORCID,Cuiñas Iñigo1ORCID,Verhaevert Jo2ORCID

Affiliation:

1. atlanTTic Research Center, Signal Theory and Communications Department, Universidade de Vigo, 36310 Vigo, Spain

2. IDLab, Department of Information Technology, Ghent University-imec, 9052 Ghent, Belgium

Abstract

Radars in the W-band are being integrated into car bumpers for functionalities such as adaptive cruise control, collision avoidance, or lane-keeping. These Advanced Driving Assistance Systems (ADAS) enhance traffic security in coordination with Intelligent Transport Systems (ITS). This paper analyzes the attenuation effect that car bumpers cause on the signals passing through them. Using the free-space transmission technique inside an anechoic chamber, we measured the attenuation caused by car bumper samples with different material compositions. The results show level drops lower than 1.25 dB in all the samples analyzed. The signal attenuation triggered by the bumpers decreases with the frequency, with differences ranging from 0.55 dB to 0.86 dB when comparing the end frequencies within the radar band. Among the analyzed bumper samples, those with a thicker varnish layer or with talc in the composition seem to attenuate more. We also provide an estimation of the measurement uncertainty for the validation of the obtained results. Uncertainty analysis yields values below 0.21 dB with a 95% coverage interval in the measured frequency band. When comparing the measured value with its uncertainty, i.e., the relative uncertainty, the lower the frequency in the measured band, the more accurate the measurements seem to be.

Funder

Xunta de Galicia

Ministerio de Ciencia e Innovación

Ministerio de Universidades

European Union NextGenerationEU/PRTR with a Margarita Salas agreement from Universidade de Vigo

Atlantic Research Center

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3