Mathematical Simulation of Forest Fuel Pyrolysis in One-Dimensional Statement Taking into Account Soot Formation

Author:

Baranovskiy NikolayORCID,Kirienko Viktoriya

Abstract

Pyrolysis (thermal decomposition) is considered as the most important stage of a forest fire before direct forest fuel ignition. This process is accompanied by soot particle formation. Such particles have a negative impact on public health in the vicinity of forest fires. The purpose of this article was to investigate the heat and mass transfer process occurring in a typical forest fuel element (birch leaf). The pyrolysis and soot formation processes were taken into account, and various forest fire scenarios were considered. Computational experiments were carried out using the high-level programming language Delphi. Heat and mass transfer processes were described by nonlinear non-stationary differential heat conduction equations with corresponding initial and boundary conditions. The differential equations were solved by the finite difference method. Nonlinearity was resolved using a simple iteration. The main results of the research were (1) physical and mathematical models proposed for modeling forest fuel pyrolysis, taking into account soot formation and conditions corresponding to various forest fires; (2) a computer program coded in the high-level programming language Delphi; (3) the obtained temperature distributions over leaf thickness; (4) volume fractions obtained for various components dependent on time and space coordinates. The qualitative analysis of the dependencies showed that the temperature distributions in the birch leaf structure are similar for all forest fire types and differ only in absolute value. The intensity of the soot formation process directly depends on the forest fire type. The presented results should be useful in predicting and assessing forest fire danger, including near the facilities of the Russian Railways.

Funder

Russian Foundation for Basic Researches

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3