Slippage during High-Pressure Torsion: Accumulative High-Pressure Torsion—Overview of the Latest Results

Author:

Gunderov Dmitriy V.12ORCID,Asfandiyarov Rashid N.12ORCID,Astanin Vasily V.23ORCID,Sharafutdinov Alfred V.2

Affiliation:

1. Institute of Molecule and Crystal Physics of Ufa Federal Research Centre RAS, Prospekt Oktyabrya 151, 450075 Ufa, Russia

2. Department of Materials Science and Physics of Metals, Ufa University of Science and Technology, 12 K. Marksa ul., 450008 Ufa, Russia

3. Research Equipment Sharing Center “Nanotech”, Ufa University of Science and Technology, 12 K. Marksa ul., 450008 Ufa, Russia

Abstract

This overview examines the results of a study of the effect of slippage in high-pressure torsion (HPT). A number of papers in this area and the works of the authors of this overview are considered. The authors used the method of the “joint HPT of the disk halves”. This method is the simplest and most illustrative method for evaluating slippage during HPT. The authors used 10 and 20 mm diameter anvils, with a groove on the lower anvil and a calculated pressure of 6 GPa. In the case of the HPT of solid bulk metal glass (BMG), slippage starts at the early stages of HPT and is total. Slippage may also be significant at the early stages of the HPT of such metallic materials as Ti, Ni, Fe-0.1%C, and Zr-2.5%Nb. Slippage increases with the number of revolutions, n. There is no slippage at the initial stages of the HPT of copper. However, after HPT Cu n = 10, slippage can be total. Nevertheless, studies show that the structure of samples using HPT, obtained by the authors, is similar to the nanostructure observed by other authors after using HPT with similar materials. Thus, notwithstanding slippage during HPT, deformation during HPT still occurs, and nanostructure formation occurs. Therefore, the formation of a nanostructure in samples during HPT is not proof of the absence of slippage. The authors provide a possible explanation for this. The authors propose a new method—“accumulative high-pressure torsion”—to achieve a high strain in various materials. In this procedure, several cycles are repeated, according to the following scheme: “HPT for n = 1 or 2 turns of the anvil → cutting the specimen into pieces → unstacking the stacked pieces on the anvil and subsequent HPT for n = 1 or 2”. Studies performed on a number of materials demonstrate that novel method transforms the structure more efficiently than regular HPT.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference59 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3