Microstructure and Mechanical Properties in a Gd-Modified Extruded Mg-4Al-3.5Ca Alloy

Author:

Zhou Jixue12ORCID,Zhao Dongqing12,Tang Shouqiu1,Liu Yu3,Zhang Suqing12,Liu Yunteng12,Wu Jianhua12,Song Xiaocun1,Liu Hongtao12,Zhang Xinfang1,Yan Pengfei1,Wang Xitao1ORCID

Affiliation:

1. Shandong Provincial Key Laboratory of High Strength Lightweight Metallic Materials, Advanced Materials Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China

2. Shandong Engineering Research Center for Lightweight Automobiles Magnesium Alloy, Advanced Materials Institute, Jinan 250014, China

3. College of Energy Soochow, Institute for Energy and Materials Innovations, Soochow University, Suzhou 215006, China

Abstract

In the present study, the microstructure and mechanical properties of a new Mg-4Al-3.5Ca-2Gd (AXE432) alloy are investigated. The microstructure of the as-cast AXE432 alloy consists of α-Mg, C14 (Mg2Ca), and C36((Mg, Al)2Ca) phases. After the heat treatment at 480 °C for 8 h, the C14 with fine lamellar structure changes from narrow stripes to micro-scale particles, and part of the C36 and the C14 dissolve into the α-Mg matrix, with many short needle-shaped C15 (Al2Ca) phase precipitating in the primary a-Mg grains. The AXE432 alloy extruded at a temperature as high as 420 °C exhibits a refined dynamically recrystallized (DRXed) microstructure with grain sizes less than 1.5 ± 0.5 μm and a strong {0001}<101¯0> basal texture with a maximum intensity of 5.62. A complex combination of the effects from grain size, texture, second-phase particles, and strain hardening results in balanced mechanical properties, with the tensile yield strength (TYS), ultimate tensile strength (UTS), elongation (El), compressive yield strength (CYS), and ultimate compressive strength (UCS) of 331.4 ± 2.1 MPa, 336.9 ± 3.8 MPa, 16.1 ± 2.3%, 270.4 ± 1.6 MPa and 574.5 ± 12.4 MPa, respectively.

Funder

Key R&D Program of Shandong Province, China

Natural Science Foundation of Shandong Province, China

Major innovation project for integrating science, education & industry of Qilu University of Technology

Several Policies on Promoting Collaborative Innovation and Industrialization of Achievements in Universities and Research Institutes

Natural Science Foundation of Shandong Province

Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3