Accurate Constant Phase Elements Dedicated for Audio Signal Processing

Author:

Petrzela JiriORCID

Abstract

This review paper introduces real-valued two-terminal fully passive RC ladder structures of the so-called constant phase elements (CPEs). These lumped electronic circuits can be understood as two-terminal elements described by fractional-order (FO) dynamics, i.e., current–voltage relation described by non-integer-order integration or derivation. Since CPEs that behave almost ideally are still not available as off-the-shelf components, the correct behavior must be approximated in the frequency domain and is valid only in the predefined operational frequency interval. In this study, an audio frequency range starting with 20 Hz and ending with 20 kHz has been chosen. CPEs are designed and values tabularized for predefined phase shifts that are commonly used in practice. If constructed carefully, a maximum phase error less than 0.5° can be achieved. Several examples of direct utilization of designed CPEs in signal processing applications are provided.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analytical computation of driving point impedance in mutually coupled inhomogeneous ladder networks;International Journal of Circuit Theory and Applications;2023-10-26

2. Circuit Modeling of rGO-doped Scaffolds for Spinal Cord Regeneration Based on Transient and xAC Analyses;2022 IEEE International Symposium on Circuits and Systems (ISCAS);2022-05-28

3. Designing series of fractional-order elements;Analog Integrated Circuits and Signal Processing;2021-03

4. OTA-based tunable fractional-order devices for biomedical engineering;AEU - International Journal of Electronics and Communications;2021-01

5. The Fractional Order Generalization of HP Memristor Based Chaotic Circuit with Dimensional Consistency;Cogent Engineering;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3