Electrically Small Water-Based Hemispherical Dielectric Resonator Antenna

Author:

Jacobsen Rasmus E.ORCID,Lavrinenko Andrei V.,Arslanagić SamelORCID

Abstract

Recently, water has been proposed as an interesting candidate for use in applications such as tunable microwave metamaterials and dielectric resonator antennas due to its high and temperature-dependent permittivity. In the present work, we considered an electrically small water-based dielectric resonator antenna made of a short monopole encapsulated by a hemispherical water cavity. The fundamental dipole resonances supported by the water cavity were used to match the short monopole to its feed line as well as the surrounding free space. Specifically, a magnetic (electric) dipole resonance was exploited for antenna designs with a total efficiency of 29.5% (15.6%) and a reflection coefficient of −24.1 dB (−10.9 dB) at 300 MHz. The dipole resonances were effectively excited with different monopole lengths and positions as well as different cavity sizes or different frequencies in the same cavity. The overall size of the optimum design was 18 times smaller than the free-space wavelength, representing the smallest water-based antenna to date. A prototype antenna was characterized, with an excellent agreement achieved between the numerical and experimental results. The proposed water-based antennas may serve as cheap and easy-to-fabricate tunable alternatives for use in very high frequency (VHF) and the low end of ultrahigh frequency (UHF) bands for a great variety of applications.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3