Spatiotemporal Analysis of Forest Fires in China from 2012 to 2021 Based on Visible Infrared Imaging Radiometer Suite (VIIRS) Active Fires

Author:

Dong Bing1,Li Hongwei1,Xu Jian1,Han Chaolin1,Zhao Shan1

Affiliation:

1. School of Geoscience and Technology, Zhengzhou University, Zhengzhou 450001, China

Abstract

Forest fire regimes are changing as a function of increasing global weather extremes, socioeconomic development, and land use change. It is appropriate to use long-term time series satellite observations to better understand forest fire regimes. However, many studies that have analyzed the spatiotemporal characteristics of forest fires based on fire frequency have been inadequate. In this study, a set of metrics was derived from the VIIRS active fire data in China, from 2012 to 2021, through spatial extraction, spatiotemporal clustering, and spread reconstruction to obtain the frequency of forest fire spots (FFS), the frequency of forest fire events (FFE), the frequency of large forest fire events (LFFE), duration, burned area, and spread rate; these metrics were compared to explore the characteristics of forest fires at different spatiotemporal scales. The experimental results include 72.41 × 104 forest fire spots, 7728 forest fire events, 1118 large forest fire events, and a burned area of 58.4 × 104 ha. Forest fires present a significant spatiotemporal aggregation, with the most FFS and FFE in the Southern Region and the most severe LFFE and burned area in the Southwest Region. The FFS, FFE, and LFFE show a general decreasing trend on an annual scale, with occasional minor rebounds. However, the burned area had substantial rebounds in 2020. The high incidence of forest fires was concentrated from March to May. Additionally, 74.7% of the forest fire events had a duration of less than 5 days, while 25.3% of the forest fire events lasted more than 5 days. This helps us to understand the characteristics of more serious or higher risk forest fires. This study can provide more perspectives for exploring the characteristics of forest fires, and more data underpinning for forest fire prevention and management. This will contribute towards reasonable forest protection policies and a sustainable environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3