A Novel Deep Learning Based Model for Tropical Intensity Estimation and Post-Disaster Management of Hurricanes

Author:

Devaraj Jayanthi,Ganesan Sumathi,Elavarasan RajvikramORCID,Subramaniam UmashankarORCID

Abstract

The prediction of severe weather events such as hurricanes is always a challenging task in the history of climate research, and many deep learning models have been developed for predicting the severity of weather events. When a disastrous hurricane strikes a coastal region, it causes serious hazards to human life and habitats and also reflects a prodigious amount of economic losses. Therefore, it is necessary to build models to improve the prediction accuracy and to avoid such significant losses in all aspects. However, it is impractical to predict or monitor every storm formation in real time. Though various techniques exist for diagnosing the tropical cyclone intensity such as convolutional neural networks (CNN), convolutional auto-encoders, recurrent neural network (RNN), etc., there are some challenges involved in estimating the tropical cyclone intensity. This study emphasizes estimating the tropical cyclone intensity to identify the different categories of hurricanes and to perform post-disaster management. An improved deep convolutional neural network (CNN) model is used for predicting the weakest to strongest hurricanes with the intensity values using infrared satellite imagery data and wind speed data from HURDAT2 database. The model achieves a lower Root mean squared error (RMSE) value of 7.6 knots and a Mean squared error (MSE) value of 6.68 knots by adding the batch normalization and dropout layers in the CNN model. Further, it is crucial to predict and evaluate the post-disaster damage for implementing advance measures and planning for the resources. The fine-tuning of the pre-trained visual geometry group (VGG 19) model is accomplished to predict the extent of damage and to perform automatic annotation for the image using the satellite imagery data of Greater Houston. VGG 19 is also trained using video datasets for classifying various types of severe weather events and to annotate the weather event automatically. An accuracy of 98% is achieved for hurricane damage prediction and 97% accuracy for classifying severe weather events. The results proved that the proposed models for hurricane intensity estimation and its damage prediction enhances the learning ability, which can ultimately help scientists and meteorologists to comprehend the formation of storm events. Finally, the mitigation steps in reducing the hurricane risks are addressed.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3