Self-Supporting Microchannel Liquid-Cooled Plate for T/R Modules Based on Additive Manufacturing: Study on Its Pass Design, Formation Process and Boiling Heat Transfer Performance

Author:

Qian BoORCID,Fan Hongri,Liu Gang,Zhang Jianrui,Li Pei

Abstract

The additive manufacturing technology of laser-based powder bed fusion (L-PBF), which is used to produce boiling heat transfer structures, offers a high processing flexibility and can provide lattice structures with a high surface-to-volume ratio. As an important part of the phased array radar, the plentiful transmit/receive (T/R) modules can generate considerable heat. Targeting this local overheating problem, this study discusses the pass design, the optimal formation process, and boiling heat transfer performance of microchannel liquid-cooled plates based on L-PBF additive manufacturing technology. The optimum design and process parameters were obtained by performing basic channel experiments. On this basis, the design and formation experiments of the microchannel structure were performed, and then the porosity and pore morphology of microchannel liquid-cooled plate samples were analysed. The boiling heat transfer experiments were conducted with deionised water, and the boiling heat transfer characteristics were compared with the saturated boiling curve of a traditional copper-tube liquid-cooled plate. The average wall temperature of the designed samples decreased by 4% compared with that of the traditional liquid-cooled plate under the same heat flow density the value reduced from 111.9 °C to 108.2 °C. Furthermore, within the same optimal boiling temperature range, the average heat flow densities of all the prepared samples increased by >60% compared with those of the traditional liquid-cooled plate the value increased from minimum 16 W∙cm−2 to maximum 34 W∙cm−2. The self-supporting microchannel structure can considerably improve the heat dissipation effect of T/R modules and solve the local overheating problem.

Funder

Ministry of Science and Technology of China

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3