Environmental Impact on Harmful Species Pseudo-nitzschia spp. and Phaeocystis globosa Phenology and Niche

Author:

Karasiewicz StéphaneORCID,Lefebvre AlainORCID

Abstract

Global environmental change modifies the phytoplankton community, which leads to variations in their phenology and potentially causes a temporal mismatch between primary producers and consumers. In parallel, phytoplankton community change can favor the appearance of harmful species, which makes the understanding of the mechanisms involved in structuring phytoplankton ecological niches paramount for preventing future risk. In this study, we aimed to assess for the first time the relationship between environmental conditions, phenology and niche ecology of harmful species Phaeocystis globosa and the complex Pseudo-nitzschia along the French coast of the eastern English Channel. A new method of bloom detection within a time-series was developed, which allowed the characterization of 363 blooms by 22 phenological variables over 11 stations from 1998 to 2019. The pairwise quantification of asymmetric dependencies between the phenological variables revealed the implication of different mechanisms, common and distinct between the taxa studied. A PERMANOVA helped to reveal the importance of seasonal change in the environmental and community variables. The Outlying Mean and the Within Outlying Mean indexes allowed us to position the harmful taxa niche among the rest of community and quantify how their respective phenology impacted the dynamic of their subniches. We also discussed the possible hypothesis involved and the perspective of predictive models.

Funder

European Union

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3