Abstract
Dynamic changes in the global market demand affect ship development. Correspondingly, big data have provided the ability to comprehend the current and future conditions in numerous sectors and understand the dynamic circumstances of the maritime industry. Therefore, we have developed a basic ship-planning support system utilizing big data in maritime logistics. Previous studies have used a ship allocation algorithm, which only considered the ship cost (COST) along limited target routes; by contrast, in this study, a basic ship-planning support system is reinforced with particularized COST attributes and greenhouse gas (GHG) features incorporated into a ship allocation algorithm related to the International Maritime Organization GHG reduction strategy. Additionally, this system is expanded to a worldwide shipping area. Thus, we optimize the operation-level ship allocation using the existing ships by considering the COST and GHG emissions. Finally, the ship specifications demanded worldwide are ascertained by inputting the new ships instance.
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering