Passive Sonar Target Tracking Based on Deep Learning

Author:

Wang YingORCID,Wang HongjianORCID,Li Qing,Xiao Yao,Ban Xicheng

Abstract

At present, the tracking accuracy of underwater passive target tracking is often limited due to models that are overly simple, with low complexity, poor universality, and an inability to learn. In this paper, a cubature Kalman filter (CKF) algorithm based on a gated recurrent unit (GRU) network is proposed. The filter innovation, prediction error, and filter gain obtained from the CKF are used as the input to the GRU network, and the filter error value is used as the output to train the network. End-to-end online learning is carried out using the designed fully connected network, and the current state of the target is predicted. In this paper, a deep neural network based on the GRU architecture is used to convert the tracking prediction problem into a time series prediction problem in the field of artificial intelligence, and its strong fitting ability is used to resolve the uncertainty of the target motion. Simulation results show that an unmanned underwater vehicle (UUV) state estimation method based on the GRU filter proposed in this paper offers better accuracy and stability than the traditional state estimation method.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference58 articles.

1. Data Fusion Simulation Model of Passive Sonar Target Wake Tracing Based on MGEKF;Wang;Torpedo Technol.,2010

2. Emulational Analysis on the Performance of Underwater Bearing-only Passive Target Tracking Using Two Arrays;Guan;J. Syst. Simul.,2003

3. Tracking a three‐dimensional moving target with distributed passive sensors using extended Kalman filter

4. Bearing-only tracking algorithm for underwater passive target;Cao;Electron. Des. Eng.,2014

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3