An SVM-Based NAND Flash Endurance Prediction Method

Author:

Zhang HaichunORCID,Wang Jie,Chen Zhuo,Pan Yuqian,Lu Zhaojun,Liu Zhenglin

Abstract

NAND flash memory is widely used in communications, commercial servers, and cloud storage devices with a series of advantages such as high density, low cost, high speed, anti-magnetic, and anti-vibration. However, the reliability is increasingly getting worse while process improvements and technological advancements have brought higher storage densities to NAND flash memory. The degradation of reliability not only reduces the lifetime of the NAND flash memory but also causes the devices to be replaced prematurely based on the nominal value far below the minimum actual value, resulting in a great waste of lifetime. Using machine learning algorithms to accurately predict endurance levels can optimize wear-leveling strategies and warn bad memory blocks, which is of great significance for effectively extending the lifetime of NAND flash memory devices and avoiding serious losses caused by sudden failures. In this work, a multi-class endurance prediction scheme based on the SVM algorithm is proposed, which can predict the remaining P-E cycle level and the raw bit error level after various P-E cycles. Feature analysis based on endurance data is used to determine the basic elements of the model. Based on the error features, we present a variety of targeted optimization strategies, such as extracting the numerical features closely related to the endurance, and reducing the noise interference of transient faults through short-term repeated operations. Besides a high-parallel flash test platform supporting multiple protocols, a feature preprocessing module is constructed based on the ZYNQ-7030 chip. The pipelined module of SVM decision model can complete a single prediction within 37 us.

Funder

National Natural Science Foundation of China-China Academy of General Technology Joint Fund for Basic Research

a grant of key technologies R&D general program of Shenzhen

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Reference22 articles.

1. Memory Market Not Forecast to Exceed 2018 High of $163.3B until 2022https://www.icinsights.com/news/bulletins/Memory-Market-Not-Forecast-To-Exceed-2018-High-Of-1633B-Until-2022

2. A survey of techniques for architecting SLC/MLC/TLC hybrid Flash memory-based SSDs

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3