Gaze Point Tracking Based on a Robotic Body–Head–Eye Coordination Method

Author:

Feng Xingyang1,Wang Qingbin2,Cong Hua1,Zhang Yu1,Qiu Mianhao1

Affiliation:

1. Army Academy of Armored Forces, Beijing 100072, China

2. Research Center of Precision Sensing and Control, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China

Abstract

When the magnitude of a gaze is too large, human beings change the orientation of their head or body to assist their eyes in tracking targets because saccade alone is insufficient to keep a target at the center region of the retina. To make a robot gaze at targets rapidly and stably (as a human does), it is necessary to design a body–head–eye coordinated motion control strategy. A robot system equipped with eyes and a head is designed in this paper. Gaze point tracking problems are divided into two sub-problems: in situ gaze point tracking and approaching gaze point tracking. In the in situ gaze tracking state, the desired positions of the eye, head and body are calculated on the basis of minimizing resource consumption and maximizing stability. In the approaching gaze point tracking state, the robot is expected to approach the object at a zero angle. In the process of tracking, the three-dimensional (3D) coordinates of the object are obtained by the bionic eye and then converted to the head coordinate system and the mobile robot coordinate system. The desired positions of the head, eyes and body are obtained according to the object’s 3D coordinates. Then, using sophisticated motor control methods, the head, eyes and body are controlled to the desired position. This method avoids the complex process of adjusting control parameters and does not require the design of complex control algorithms. Based on this strategy, in situ gaze point tracking and approaching gaze point tracking experiments are performed by the robot. The experimental results show that body–head–eye coordination gaze point tracking based on the 3D coordinates of an object is feasible. This paper provides a new method that differs from the traditional two-dimensional image-based method for robotic body–head–eye gaze point tracking.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3