SFA-Net: Semantic Feature Adjustment Network for Remote Sensing Image Segmentation

Author:

Hwang Gyutae1ORCID,Jeong Jiwoo1ORCID,Lee Sang Jun2ORCID

Affiliation:

1. Division of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

2. Future Semiconductor Convergence Technology Research Center, Division of Electronic Engineering, Jeonbuk National University, Jeonju 54896, Republic of Korea

Abstract

Advances in deep learning and computer vision techniques have made impacts in the field of remote sensing, enabling efficient data analysis for applications such as land cover classification and change detection. Convolutional neural networks (CNNs) and transformer architectures have been utilized in visual perception algorithms due to their effectiveness in analyzing local features and global context. In this paper, we propose a hybrid transformer architecture that consists of a CNN-based encoder and transformer-based decoder. We propose a feature adjustment module that refines the multiscale feature maps extracted from an EfficientNet backbone network. The adjusted feature maps are integrated into the transformer-based decoder to perform the semantic segmentation of the remote sensing images. This paper refers to the proposed encoder–decoder architecture as a semantic feature adjustment network (SFA-Net). To demonstrate the effectiveness of the SFA-Net, experiments were thoroughly conducted with four public benchmark datasets, including the UAVid, ISPRS Potsdam, ISPRS Vaihingen, and LoveDA datasets. The proposed model achieved state-of-the-art accuracy on the UAVid, ISPRS Vaihingen, and LoveDA datasets for the segmentation of the remote sensing images. On the ISPRS Potsdam dataset, our method achieved comparable accuracy to the latest model while reducing the number of trainable parameters from 113.8 M to 10.7 M.

Funder

the Korea government

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3