Spatio-Temporal Pruning for Training Ultra-Low-Latency Spiking Neural Networks in Remote Sensing Scene Classification

Author:

Li Jiahao1,Xu Ming1,Chen He1,Liu Wenchao1,Chen Liang1,Xie Yizhuang1

Affiliation:

1. Beijing Key Laboratory of Embedded Real-Time Information Processing Technology, Beijing Institute of Technology, Beijing 100081, China

Abstract

In remote sensing scene classification (RSSC), restrictions on real-time processing on power consumption, performance, and resources necessitate the compression of neural networks. Unlike artificial neural networks (ANNs), spiking neural networks (SNNs) convey information through spikes, offering superior energy efficiency and biological plausibility. However, the high latency of SNNs restricts their practical application in RSSC. Therefore, there is an urgent need to research ultra-low-latency SNNs. As latency decreases, the performance of the SNN significantly deteriorates. To address this challenge, we propose a novel spatio-temporal pruning method that enhances the feature capture capability of ultra-low-latency SNNs. Our approach integrates spatial fundamental structures during the training process, which are subsequently pruned. We conduct a comprehensive evaluation of the impacts of these structures across classic network architectures, such as VGG and ResNet, demonstrating the generalizability of our method. Furthermore, we develop an ultra-low-latency training framework for SNNs to validate the effectiveness of our approach. In this paper, we successfully achieve high-performance ultra-low-latency SNNs with a single time step for the first time in RSSC. Remarkably, our SNN with one time step achieves at least 200 times faster inference time while maintaining a performance comparable to those of other state-of-the-art methods.

Funder

National Natural Science Foundation for Young Scientists of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3