Abstract
Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small Unmanned Aerial Vehicle (sUAV) data were used to quantitatively analyze channel evolution by a large flash flood event on 25 and 26 June 2018. It was found that the stable riverbed structure formed by the armour layer appeared in the tenth year after the Wenchuan earthquake. In a confined channel, the layer can protect the channel and resist the drastic change after the flash flood event with only a small bed elevation from 0.2 m to 2 m. Without the protection of the armour, the change could reach 6 m in the unconfined channel. Meanwhile, more materials with a deposition volume of about 7450 m3 from tributaries were generally taken to the main channel, and more intense erosion with a volume of 105 m3 mostly occurred downstream of tributaries. It was noted that, in the cross-section, the increased channel width could lead to a significant change with the large volume of 35 m3. Additionally, a conceptual diagram of the generalized channel response to large flash floods was provided during multi-stage periods after the Wenchuan earthquake. It determined the rebalance processes of channel evolution in the tenth year after the earthquake. This study will contribute to understanding the post-earthquake long-term channel evolutions and could provide decision-makers of assessing the mitigation strategies for higher-magnitude flood disasters triggered by channel change in earthquake-affected watersheds.
Funder
National Natural Science Foundation of China
National Postdoctoral Program for Innovative Talents
Key Research Program of Frontier Sciences, CAS
China Postdoctoral Science Foundation
the Special Research Assistant program of the Chinese Academy of Sciences
Subject
General Earth and Planetary Sciences
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献