Channel Evolution Triggered by Large Flash Flood at an Earthquake-Affected Catchment

Author:

Jin WenORCID,Wang Hao,Zhang Guotao,Liu DingzhuORCID,Wang Jiao

Abstract

Earthquakes–induced landslides generally provide abundant loose materials at hillslopes, possibly triggering morphological reshaping processes at river channels and riverbeds during the large flash flood hydrograph and bringing huge risk downstream. Therefore, in a Wenchuan earthquake-affected catchment, the collected hydro-meteorological data and high-precision small Unmanned Aerial Vehicle (sUAV) data were used to quantitatively analyze channel evolution by a large flash flood event on 25 and 26 June 2018. It was found that the stable riverbed structure formed by the armour layer appeared in the tenth year after the Wenchuan earthquake. In a confined channel, the layer can protect the channel and resist the drastic change after the flash flood event with only a small bed elevation from 0.2 m to 2 m. Without the protection of the armour, the change could reach 6 m in the unconfined channel. Meanwhile, more materials with a deposition volume of about 7450 m3 from tributaries were generally taken to the main channel, and more intense erosion with a volume of 105 m3 mostly occurred downstream of tributaries. It was noted that, in the cross-section, the increased channel width could lead to a significant change with the large volume of 35 m3. Additionally, a conceptual diagram of the generalized channel response to large flash floods was provided during multi-stage periods after the Wenchuan earthquake. It determined the rebalance processes of channel evolution in the tenth year after the earthquake. This study will contribute to understanding the post-earthquake long-term channel evolutions and could provide decision-makers of assessing the mitigation strategies for higher-magnitude flood disasters triggered by channel change in earthquake-affected watersheds.

Funder

National Natural Science Foundation of China

National Postdoctoral Program for Innovative Talents

Key Research Program of Frontier Sciences, CAS

China Postdoctoral Science Foundation

the Special Research Assistant program of the Chinese Academy of Sciences

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3