An Overview of Machine Learning Techniques for Sediment Prediction

Author:

Nda Muhammad1ORCID,Adnan Mohd Shalahuddin2,Yusoff Mohd Azlan Bin Mohd2ORCID,Nda Ramatu Muhammad3

Affiliation:

1. Department of Civil Engineering, The Federal Polytechnic Bida, Bida 912211, Niger State, Nigeria

2. Faculty of Civil Engineering and Built Environment, Universiti Tun Hussein Onn Malaysia, Parit Raja 86400, Johor, Malaysia

3. Faculty of Computing and Information Technology, Newgate University Minna, Minna 920101, Niger State, Nigeria

Publisher

MDPI

Reference40 articles.

1. Machine learning approach to modeling sediment transport;Bhattacharya;J. Hydraul. Eng.,2007

2. Integrative neural networks model for prediction of sediment rating curve parameters for ungauged basins;Atieh;J. Hydrol.,2015

3. Davis, B.E. (2023, September 08). A Guide to the Proper Selection and Use of Federally Approved Sediment and Water-Quality Samplers. U.S. Geological Survey, Open File Report 2005-1087, Available online: https://pubs.usgs.gov/of/2005/1087/.

4. Edwards, T.K., and Glysson, G.D. (1999). Field Methods for Measurement of Fluvial Sediment.

5. Larsen, M.C. (July, January 27). Fluvial Sediment in the Environment: A National Challenge. Proceedings of the 9th Federal Interagency Sedimentation Conference, Las Vegas, NV, USA.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3